среда, 27 февраля 2013 г.

четверг, 31 января 2013 г.

Теория относительности применяется в физике и астрономии начиная с XX века. Впервые новая теория заменила 200-летнюю механику Ньютона. Это в корне изменило восприятие мира.

Ньютоновские понятия о движении были опровергнуты или кардинально скорректированы посредством нового достаточно глубокого применения принципа относительности движения. Время уже не было абсолютным (а начиная с ОТО — и равномерным).
Более того, Эйнштейн изменил фундаментальные взгляды на время и пространство. Согласно теории относительности время необходимо воспринимать как почти равноправную составляющую (координату) пространства-времени, которая может смешиваться в преобразовании координат при смене (изменении скорости движения) системы отсчета с обычными пространственными координатами, подобно тому, как смешиваются друг с другом пространственные координаты в преобразовании их при повороте осей обычной трехмерной системы координат.
Теория относительности значительно расширила понимание физики в целом, а также существенно углубила знания в области физики элементарных частиц, дав мощнейший импульс и серьёзные новые теоретические инструменты для развития физики, значение которого трудно переоценить.
С помощью данной теории космология и астрофизика сумела предсказать такие чрезвычайные явления, как нейтронные звездычерные дыры и гравитационные волны.


В настоящее время теория относительности общепринята в научном сообществе и составляет базис современной физики.[1] Процесс её распространения и признания в научном сообществе, тем не менее, протекал непросто. Например, критическое отношение к положениям теории относительности выражали Нобелевские лауреаты Филипп Ленард[2], Штарк, Дж. Дж. Томсон, а также философы и учёные (например, Циолковский[3], Жуковский, Тесла и др.).
Сказанное выше относится в большей мере к специальной теории относительности. Общая теория относительности (ОТО) в меньшей степени экспериментально проверена, содержит несколько принципиальных проблем, и известно, что пока в принципе допустимы некоторые из альтернативных теорий гравитации, большинство из которых, правда, можно считать в той или иной мере просто модификацией ОТО. Тем не менее, в отличие от многих из альтернативных теорий, по мнению научного сообщества ОТО в своей области применимости пока соответствует всем известным экспериментальным фактам, в том числе и сравнительно недавно обнаруженным (так, недавно было найдено ещё одно возможное подтверждение существованию гравитационных волн[4][5]). В целом же ОТО является в своей области применимости «стандартной теорией», то есть признанной научным сообществом главной и наилучшей.
Эквивале́нтность ма́ссы и эне́ргии — физическая концепция (в области теории относительности), согласно которой энергия физического объекта (физической системы) равна его (её) массе, умноженной на размерный множитель квадрата скорости света в вакууме:


E=mc^2 где E — энергия объекта, m — его масса, c — скорость света в вакууме,

равная 299 792 458 м/с.





В зависимости от того, что понимается под терминами «масса» и «энергия», данная концепция может быть интерпретирована двояко:
с одной стороны, концепция означает, что (инвариантная) масса тела (называемая также массой покоя) равна — с точностью до постоянного множителя — энергии, «заключённой в нём», то есть его энергии, измеренной или вычисленной в сопутствующей системе отсчёта (системе отсчёта покоя), так называемой энергии покоя, или в широком смысле внутренней энергии этого тела,




где — энергия покоя тела, — его инвариантная масса;
с другой стороны, можно утверждать, что любому виду энергии (не обязательно внутренней) физического объекта (не обязательно тела) соответствует некая масса; например, было введено понятие релятивистской массы, равной (с точностью до множителя ) полной (включая кинетическую) энергии движущегося объекта,




где — полная энергия объекта, — его релятивистская масса.


Первая интерпретация не является лишь частным случаем второй. Хотя энергия покоя является частным случаем энергии, а практически равна в случае нулевой или малой скорости движения тела, но имеет выходящее за рамки второй интерпретации физическое содержание: эта величина является скалярным (то есть выражаемым одним числом) инвариантным (неизменным при смене системы отсчёта) множителем в определении 4-вектора энергии-импульса, аналогичным ньютоновской массе и являющимся её прямым обобщением, и к тому же является модулем 4-импульса. Дополнительно, именно (а не ) является единственным скаляром, который не только характеризует инертные свойства тела при малых скоростях, но и через который эти свойства могут быть достаточно просто записаны для любой скорости движения тела.


И таким образом, — инвариантная масса — физическая величина, имеющая самостоятельное и во многом более фундаментальное значение.